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Problem formulation
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polyhedral meshes are preferable for some CFD applications

moving mesh methods (Lagrangian, ALE) result in non-planar faces

unlimited possibilities for mesh generation

– p.3/24



Problem formulation (cont.)
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MFD: pressure
MFE: pressure
MFD: velocity
MFE: velocity

the mixed FE method does not converge on randomly perturbed meshes
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Mimetic finite difference method

Continuum Problem MFD method

div~u = b

~u = −∇p

DIVuh = bh

uh = −GRADph

div = −∇∗

ker(∇)=constants

DIV = −GRAD∗

ker(GRAD)=constants
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Mimetic finite difference method

∇ = −div∗ ker(∇) = constants

Four-step methodology:
1. Define degrees of freedom for ph ∈ Qh and uh ∈ Xh

2. Discretize the divergence operator, DIV

3. Equip discrete spaces with inner products [· , ·]Q and [· , ·]X

4. Derive the gradient operator, GRAD, from discrete Green’s formula

GRAD = −DIV∗ ker(GRAD) = constants
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Degrees of freedom for ph and uh

ph is constant on E

ph
E is the degree of freedom associated with element E
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Degrees of freedom for ph and uh

uh is constant on faces of E

uh
f is the normal velocity component associated with face f
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Divergence operator

Divergence theorem:
∫

E

div ~u =

∮

∂E

~u · ~n

implies
(

DIV uh
)

E
=

1

|E|

∑

f∈∂E

uh
f |f |
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Inner products

[ph, qh]Q =
∑

E∈Ωh

ph
E qh

E |E|

[uh, vh]X =
∑

E∈Ωh

[uh, vh]E

[uh, vh]E =

kE
∑

i,j=1

ME,i,j uh
fi

vh
fj

where ME = ME
T > 0 and kE is the number of faces of E.
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Gradient operator
The Green formula

∫

Ω

~u · ∇p = −

∫

Ω

p div ~u.

The discrete Green formula

[uh, GRAD ph]X = −[ph, DIV uh]Q

defines the gradient operator.
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Properties of the discretization

solution algorithm results in a problem with the
SPD matrix

full diffusion tensor is easily incorporated into the
discretization methodology

2nd order accurate for pressure variable when
elements have planar (or slightly perturbed) faces

1st order accurate for velocity variable
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Convergence analysis
Our theory forbids:

anisotropic (stretched) elements
stretched faces
small 2D angles

Our theory allows:
regular meshes
degenerate elements
non-convex elements
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Polygonal meshes

p(x, y) = x3y2 + x sin(2πxy) sin(2πy), K =





(x + 1)2 + y2 −xy

−xy (x + 1)2
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Polygonal meshes

p(x, y) = x3y2 + x sin(2πxy) sin(2πy), K =





(x + 1)2 + y2 −xy

−xy (x + 1)2
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s=2.09

s=1.56

pressure
velocity
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Polyhedral meshes
Problem similar to the above 2D problem
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s=1.91

s=1.97

pressure
velocity
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Key element of the MFD method

[uh, vh]E =

kE
∑

i,j=1

ME,i,j uh
fi

vh
fj

Condition I: spectrally equivalent to a diagonal matrix:

ME ∼











|E|

. . .

|E|











Condition II: exact for linear pressure p1 (~u1 = ∇p1 = const):

[(∇p1)h, vh]E ≡ −

∫

E

p1(DIVvh)E +
∑

f∈∂E

vh
f

∫

f

p1
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Key element of the MFD method

[uh, vh]E =

kE
∑

i,j=1

ME,i,j uh
fi

vh
fj

Condition II: exact for linear pressure p1 (~u1 = ∇p1 = const):

















~u1 · ~n1

~u1 · ~n2

...
~u1 · ~n6

















= M−1

E

















|f1| (p
1(x1) − p1(x0))

|f2| (p
1(x2) − p1(x0))

...
|f6| (p

1(x6) − p1(x0))
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Key element of the MFD method

[uh, vh]E =

kE
∑

i,j=1

ME,i,j uh
fi

vh
fj

Condition II: take p1 = x, then ~u = (1, 0)T and
















n1,x

n2,x

...
n6,x

















= M−1

E

















|f1| (x1 − x0)

|f2| (x2 − x0)
...

|f6| (x6 − x0)
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Key element of the MFD method

[uh, vh]E =

kE
∑

i,j=1

ME,i,j uh
fi

vh
fj

Condition II: take p1 = y, then ~u = (0, 1)T and
















n1,x n1,y

n2,x n2,y

...
n6,x n6,y

















= M−1

E

















|f1| (x1 − x0) |f1| (y1 − y0)

|f2| (x2 − x0) |f1| (y2 − y0)
...

...
|f6| (x6 − x0) |f1| (y6 − y0)

















N6×2 = M−1

E R6×2
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Properties of matrices N and R

Lemma.
NT R = RT N = I2×2

Proof.

|E| =

∫

E

∇x · ∇(x − x0) =

∫

∂E

(∇x · ~n)(x − x0) =
∑

i

ni,x

∫

ei

(x − x0)

=
∑

i

ni,x|ei|(xi − x0) =
∑

i

Ni,1Ri,1

= (NT R)1,1

Similarly,

0 =

∫

E

∇y · ∇(x − x0) =

∫

∂E

(∇y · ~n)(x − x0) = (NT R)2,1
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Simple formula for M−1
E

A solution to
N = M−1

E R ≡ W R

is
W0 = N NT

check: W0 R = N NT R = N I = N

valid for any polygon and any polyhedron with planar faces

W0 = WT
0
≥ 0

general form for the solution is W0 + W1 where W1 R = 0
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Simple formula for M−1
E (cont.)

Theorem. Let columns of D span ker(RT ), i.e.

RT D = 0 and DT R = 0.

Then,
M−1

E = N NT + D U DT

is the SPD matrix for any U = UT > 0.
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Simple formula for M−1
E (cont.)

M−1
E = N NT + D U DT

Let D̃ be symmetric orthogonal projector onto ker(RT )
and

U = uI, u =
1

|E|
.

Then

M−1
E = N NT + uD̃

computing of M−1
E requires (2d + 1)k2

E + 4d2kE
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Family of MFD methods

Ek  − gon

M−1
E = N NT + D U DT

size of U is kE − 2

(kE − 1)(kE − 2)/2 free coefficients

the same formula holds for polyhedral meshes

straightforward generalization to full material tensor
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Strongly curved faces
the mesh face f is called strongly curved if

|~n − ~Nf | > σ|f |1/2 ~Nf =
1

|f |

∫

f

~n.
~Nf

~af,1
~af,2

3 d.o.f. (3 components of a velocity vector)
per strongly curved mesh face

uh
f · ~Nf =

1

|f |

∫

f

~u · ~n

and

uh
f · ~af,i =

1

|f |

∫

f

~u · ~af,i i = 1, 2.

the matrix M−1

E is generated as it was described above!
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Polyhedral meshes

68% of interior mesh
faces are non-planar
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MFD new: pressure
MFD old: pressure
MFD new: velocity
MFD old: velocity
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Recent and future developments
use the family of MFD methods to attack other
computational problems

extensions to other PDEs

local-flux MFD methods (with I.Yotov)

Fluxes are connected in small groups around
mesh vertices. Thus,

uh = G̃RAD ph

where G̃RAD has a local stencil.
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Conclusion
For diffusion problems on unstructured polygonal
and polyhedral meshes, we developed a family of
mimetic finite difference methods with the following
properties:

methods are computationally cheap

they have optimal convergence rates

and result in SPD matrices
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